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EXECUTIVE SUMMARY 

Research for this study was carried out under a two-year project to support the 

implementation of Ecosystem-Based Management (EBM) at two catchment-to-reef sites on 

Vanua Levu, Fiji, during which conservation planning approaches were trialled using EBM 

tools to evaluate options for re-designing marine protected area (MPA) networks. Current 

approaches in systematic conservation planning have focused on developing tools to 

maximize conservation benefits while minimizing socio-economic costs to users of a 

landscape or seascape area. In this study, we present a novel method for calculating the 

opportunity costs of conservation actions to multiple gear type users arising from fisher 

displacement due to the establishment of MPAs in Kubulau District, Vanua Levu, Fiji.  The 

method builds upon those applied in land conservation in which the probability of land 

conversion to alternate functions is used to estimate opportunity costs to multiple 

stakeholders, which differs from previous approaches by providing information about costs 

of currently unused areas that may be of potential future benefit.  We model opportunity 

costs of establishing a network of MPAs as a function of food fish abundance, probability of 

catch as function of gear type and market value of species. Count models (including Poisson, 

Negative Binomial and two zero-inflated models) were used to predict spatial distribution of 

abundance for preferred target fish species and validated against underwater visual census 

(UVC) surveys and biophysical predictor variables (reef type, reef exposure, depth, distance 

to shore, protection status). Spatial distributions of targeted fish within the three most 

frequently sighted food fish families (Acanthuridae, Lutjanidae, Scaridae) varied 

considerably: Lutjanidae had the highest abundance on barrier reefs; Acanthuridae on 

inshore fringing and patch reefs; and Scaridae on fringing reefs. Modeled opportunity cost, 

estimated as a function of abundance and probability of catch by gear type, indicated 

highest cost to fishers would arise from restricting access to the fringing reef between the 

villages of Navatu and Kiobo and the lowest cost would arise from restricting access to the 

Cakaunivuaka reef. The opportunity cost layer was added to Marxan models to identify 

optimum areas for protection to meet fisheries objectives in Kubulau’s traditional fisheries 

management area with: (a) the current MPA network locked in place; and (b) a clean-slate 

approach. The opportunity cost method presented here gives an unbiased estimate of 

opportunity costs to multiple gear types in a marine environment that can be applied to any 

region using existing species data.  
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INTRODUCTION 

The rapid degradation of marine resources resulting from human activity has instigated a 

global movement to increase the protection of the oceans (IUCN 2009).  The establishment 

of protected areas is a widespread and acknowledged tool for conserving biodiversity and 

the provisioning of ecosystem services (MEA 2005).  In the marine environment, the positive 

benefits of marine protected areas (MPAs) are widely reported and include increases in: 

biomass of fisheries resources; size of target species; and species richness (Lester et al. 

2009). However, these benefits rely on effective reserve design as well as compliance and 

enforcement.   

 

There has been considerable discussion on differences in design criteria for reserves and 

reserve networks with explicit goals of biodiversity conservation versus fisheries production 

(Halpern & Warner 2003; Hastings & Botsford 2003; Almany et al. 2009): optimum designs 

to meet both objectives may ultimately require trade-offs between size, spacing and 

representation.  Systematic conservation planning can account for these trade-offs during 

the selection of areas for conservation (Margules & Pressey 2000) and is currently the 

preferred approach to designing MPA networks in developed countries (Sala et al. 2002).  

Historically driven by biological goals and data, the technical ability to design effective 

protected area networks has evolved rapidly (Margules & Pressey 2000).  Despite this 

progress, recent research highlights the need to include socio-economic data in 

conservation planning as it will influence the likely outcomes of plans (Naidoo et al. 2006; 

Polasky 2008). 

 

Use of socio-economic criteria is especially important in the context of developing countries 

where social acceptance is a critical factor in determining MPA success and data is generally 

limited (Ban et al. 2009; Johannes 1998). While inclusion of socio-economic factors in the 

design of MPAs has increased in the last decade (Ban & Klein 2009), the spatial variation in 

costs to stakeholder groups needs to be better understood and incorporated into 

conservation plans (Adams et al. in press; Klein et al. 2008; Klein et al. 2009).  This is 

especially important in Pacific Island countries where: communities are highly dependent on 

marine resources for subsistence (Adams et al. 1997); fishers have limited spatial and 

occupational mobility (Aswani & Lauer 2006); and customary marine tenure institutions set 

social and governance constraints on MPA network design (Aswani & Hamilton 2004). For 

example, research from the Western Province of the Solomon Islands suggests that success 

of MPA networks relies on their placement within secure sea tenure regimes and the 

perception of equitable distribution of biological and social costs and benefits by resource 

users (Aswani & Hamilton 2004). Any type of conservation planning approach to MPA 

network design for the Western Pacific needs to be particularly sensitive to these cultural 

needs. 

 

The most prevalent type of socio-economic data included in conservation planning is 

fisheries catch data (Ban & Klein 2009).  Catch per unit effort (CPUE) data included are 

typically derived from socio-economic survey questions such as fishing location, gear used 

and the type and amount of fish caught.  These data both enable assessment of the spatial 

distribution of fishing effort and can be combined with ecological surveys to examine the 

effects of fishing effort on reef fish community composition (Jennings & Polunin 1996).  The 
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collection of CPUE data is becoming standard practice, particularly for commercial fisheries 

within developed countries (Klein et al. 2008; Richardson et al. 2006), and national-scale 

collection of artisanal and subsistence CPUE data can be done at relatively low-cost in 

developing countries (Fiji Locally Managed Marine Area network, unpublished data).  Recent 

studies have also examined how to use CPUE data to plan for multiple fisheries to ensure 

that the impact of MPAs is not displaced onto a single stakeholder group (Klein et al. 2008; 

Klein et al. 2009).   

 

One limitation of CPUE data is that they only capture the current fishing effort, which may 

result in areas with no identified effort.  To respond to these issues, some conservation 

planning exercises have defined the cost to be a function of effort and area to ensure that 

these areas are not considered without socio-economic cost for conservation (Game et al. 

2008; Stewart et al. 2003).   However, for areas with no current fishing effort, assuming 

homogenous costs (i.e. allowing costs to be a function of area alone) does not capture what 

is likely to be heterogeneous effort.  Areas may have no current fishing effort for several 

reasons, including: survey data did not capture the seasonality of fishing distributions due to 

the timing of data collection; and, particularly in developing countries, access to offshore 

areas may be restricted due to lack of current economic capacity to purchase motorised 

transportation (Salas & Gaertner 2004). 

 

As access to motor boats increases, it is reasonable to expect that fishing effort will change 

and move further offshore to areas currently not fished.  Therefore, a method for estimating 

opportunity costs of areas currently not fished is needed so that conservation plans take 

into account the heterogeneous opportunity costs to fishers.  A method for calculating 

opportunity costs in transitional landscapes has been developed (Naidoo & Adamowicz 

2006), however an analogous method is not currently described for marine environments.  

In response to this need, we present a novel method for calculating the opportunity costs to 

multiple gear type groups arising from fisher displacement due to the establishment of 

marine protected areas and apply the method to a region in Fiji. We then demonstrate an 

application of using the opportunity cost layer within a conservation planning software 

framework to present recommendations for reconfiguring an existing community-managed 

MPA network in Kubulau District, Fiji Islands, to improve its social acceptance. 

 

Through this study, we seek to address 5 main questions: 

(1) Where are the preferred target species located and what spatial models serve as the 

best predictors of species abundance; 

(2) Where in Kubulau is current fishing effort focused and how does it vary by gear; 

(3) What are the differences in opportunity costs across users of different fishing gear, 

based on current and potential costs; 

(4) Where would be the best areas to modify the current MPA network to reduce 

conflict and improve fisheries benefits and which users would be most affected by 

these changes; and 

(5) How can this model be applied to other resource management decisions? 
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METHODS 

Study area 

Kubulau District is an administrative unit of Bua Province, in south west Vanua Levu, 

Republic of Fiji Islands (Figure 1). The traditional fishing grounds (qoliqoli) have been legally 

demarcated by the Fiji Native Lands and Fisheries Commission. The 261.6 km2 of inshore 

waters within the Kubulau qoliqoli contain a diverse array of habitats, including reef flats, 

seagrass beds, coastal fringing reefs, soft bottomed lagoons, patch reefs, offshore barrier 

reefs and deep channels. Fish diversity estimates from rapid surveys in 2003 showed 

comparable numbers to sites in Indonesia and Papua Guinea (Marnane et al. 2003), with 

endemics represented by nearly 5% of all fish observed (WCS 2009).  Measurements of 

targeted food fish from underwater visual census (UVC) surveys along Kubulau forereefs 

range from 0.002 to 12.1 tonnes ha-1 (WCS, unpublished data).  

 

 
 

Figure 1. Survey 

sites for biological 

surveys and 

villages surveyed 

for CPUE data in 

Kubulau district, 

Vanua Levu, Fiji.  

Reef habitats for 

the Kubulau 

qoliqli and 

current tabu and 

MPAs are 

mapped.  

Underwater 

visual census  

(UVC) survey sites 

are shown and 

villages for CPUE 

data are labelled.  

Reef names of 

significant reefs 

are shown for 

reference. 
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In response to concerns about declining marine resources, the Kubulau chiefs established a 

district fisheries committee, who in 1997 banned commercial fishing by non-resource 

owners within the qoliqoli. The committee also informally declared a community-managed, 

no-take marine reserve around Namenalala Island. Despite the early success of the Namena 

Marine Reserve, the Kubulau communities recognized by 2003 that they needed some 

external assistance to halt the decline in key food fish species. In order to additionally 

address the impacts of unsustainable land use on water quality and the health of 

downstream ecosystems, the chiefs established the Kubulau Resource Management 

Committee (KRMC) to promote integrated management of marine, freshwater and 

terrestrial resources throughout the district. In 2005, the communities of Kubulau formally 

established a network of MPAs, including 17 village-managed (tabu) areas and 3 no-take 

district marine reserves (Namena, Nasue and Namuri).  

 

The initial design of the protected areas network, and its subsequent reconfiguration, were 

informed by both socioeconomic and biological research undertaken by the KRMC and its 

conservation partners – the Wildlife Conservation Society, WWF, Wetlands International-

Oceania and the Coral Reef Alliance.  A ridge-to-reef management plan was completed for 

Kubulau District in July 2009 and has been endorsed by the council of chiefs (WCS 2009). 

However, lack of consideration for village traditional fishing rights areas (kanakana) has 

created conflict over access to certain closed areas, which in at least one case has resulted 

in violent altercations between community fish wardens trying to prevent locals from fishing 

in a designated protected area (Clarke & Jupiter in press).   

 

The total population of Kubulau District is approximately 1,000 people distributed across 10 

villages and 1 settlement. The 7 coastal villages have a higher dependence on marine 

resources than the 3 inland villages and 1 settlement, though presently only 4 of the coastal 

villages (Navatu, Namalata, Kiobo, Natokalau) have motorized vessels used for fishing. 

Preferred fishing gear types include: gill nets; spearguns; hand spears; hook and line; and 

Hawaiian slings (see Table 1 for full listing).    

Target species data 

Shortly after the establishment of the protected area network, underwater visual census 

(UVC) surveys were carried out at 99 locations within the Kubulau qoliqoli between October 

and December 2005 to measure fish abundance and size of the following families: 

Acanthuridae, Ephippidae, Haemulidae, Lethirinidae, Lutjanidae, Mullidae, Scaridae, 

Serranidae (groupers only), Siganidae. Sites were chosen to maximize spatial representation 

across reef habitats, resulting in low replication at the individual location level that we 

acknowledge may have high instantaneous variation in reef community assemblages 

(McClanahan et al. 2007). Measurements of fish size (total length) and abundance were 

scored along 5 m x 50 m belt transects at deep (12 -15 m) and shallow depths (5 m – 8 m) at 

most forereef sites, and at shallow depths only at backreefs sites. Each sighted fish > 2 cm 

was classified to species level within size categories (2-5, 6-10, 11-15, 16-20, 21-25, 26-30, 

31-35, 36-40 cm). The length of fishes >40 cm was recorded to the nearest cm to improve 

estimates of biomass. Biomass was calculated from size class estimates of length (LT) and 

existing published values from Fishbase (Froese & Pauly 2009) used in the standard weight-

length expression M = aLT
b, with a and b values preferentially selected from sites closest to 

Fiji (e.g. New Caledonia). If no length-weight (L-W) conversion factor was present for the 
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species, the factors for a species of similar morphology in the same genus was used 

(Jennings & Polunin 1996). If a suitable similar species could not be determined, averages 

for the genera were used. As most of the New Caledonia fishes were measured to fork 

length (FL), a length-length (L-L) conversion factor was obtained from Fishbase where 

possible to convert from total length (TL) to FL before biomass estimation. Food fish species 

(n = 148 of 190 recorded) were identified from the families recorded to be used for spatial 

modeling of abundance throughout the qoliqoli (see Species abundance models sub-section 

below). 
 

Table 1. List of transport and gear types from CPUE surveys completed by trained Kubulau 

community representatives between May 2008 to February 2009.  The largest area report for each 

transport and gear type is listed.  For combinations of transport and gear type with polygons 

unavailable, the area was set to equal to the next closest combination of gear and transport.    

 

Transport   Gear type Area of largest associated  

kn2(km1(polygon Walk Gill net  1.651 

Walk Handspear 0.989 

Walk Speargun 0.609 

Walk  Handline 1.763* 

Boat Gill net 1.752 

Boat Handline 1.763 

Boat Speargun 1.111 

Boat Trolling 1.717 

Boat Hawaiian sling 1.111† 

Boat Diving 1.417 

Boat  Handspear 0.989§ 

 Paddle Speargun 0.179 

Bilibili Gillnet 1.918 

Bilibili Handline 1.763* 

Bilibili  Speargun 0.179‡ 

 Bilibili Handspear 0.989§ 

 Paddle Hawaiian sling 1.111† 

 Paddle Gill net 0.257 

Swim Speargun 0.180 

Swim Hawaiian sling 0.180 

* Data unavailable.  Assumed the largest area used is the same as handline and boat. 

† Data unavailable.  Assumed to be the same as speargun and boat. 

‡ Data unavailable.  Assumed to be the same as speargun and paddle. 

§ Data unavailable.  Assumed to be the same as hand spear and walk. 

Habitat data 

Exposed and submerged coral reefs were digitized by the Fiji Department of Lands from 

aerial photographs captured in 1994 and 1996. Where data were missing, we digitized 

exposed reef only from Fiji topographic map sheets at 1: 50,000 scale. We used a decision 

rule classifier to divide the Kubulau qoliqoli habitats into barrier reef, patch reef, and 
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fringing reef (Table 2). Conservation targets for each habitat class for minimum 

representation in reserve design models (see Application sub-section below) are listed in 

Table 2.  To derive biophysical predictor variables for species abundance models, we further 

scored the the reef types by: exposure to tides (submerged = 1, exposed = 0); exposure to 

waves (forereefs = 1, other reef = 0); and depth (depth ≤ 5 m = 0, depth > 5 m = 1). Depth 

was calculated from digitized nautical charts. Linear distance from shore for each survey 

location was calculated in GIS. 

 
Table 2. Habitat type, percentage by area of qoliqoli and percentage of survey sites.  The data 

oversample barrier reefs (84.5% of survey sites as compared to only 53% of qoliqoli). 

 

 

Habitat 

Percentage area of 

qoliqoli 

Percentage of 

survey sites 

Conservation 

Target (%) 

Conservation 

Target (km
2
) 

Barrier 54% 84.5% 30% 11.1 

Fringing 17% 15.5% 30% 6.0 

Patch 29% 6.0% 30% 3.5 

 

Socio-economic data 

Between May 2008 and February 2009, area specific catch per unit effort (CPUE) 

information (in catch person-1 hr-1 m-2) was collected from fishers from four villages 

(Raviravi, Navatu, Kiobo, Nakorovou) within Kubulau District. Trained community volunteers 

recorded information once a week from all fish landings in the village during a 24 hour 

period. Fishers were asked for information on the total number fish caught, the number of 

fishers who went out fishing, the time spent fishing, the gear used for fishing and the 

transport used for fishing.  All participants (n = 126 total) were asked to indicate where they 

fished on a map.  Of the 126 fishers, 54 drew polygons for fishing areas and the remaining 

fishers identified their fishing spots using points. In cases where one of the polygons was 

associated with more than one gear type or method of transport, only the most efficient 

gear type and method of transport was chosen to represent the polygon.  

 

To create a single layer to represent fishing effort, all fishing spots identified as points were 

translated into polygons by creating a circle around each identified point with an area 

equivalent to that of the largest drawn polygon with the same combination of transport and 

gear (Table 1). When determining the size of the polygon to correspond with points we 

chose the largest fishing area as we felt this was a conservative method of identifying key 

fishing areas. Polygons were overlaid in geographic information system (GIS) to form one 

layer for each gear type and one layer for all gear types. A final uniform CPUE was calculated 

for each polygon by dividing the catch by the number of people fishing, time spent and 

fishing area.   

Opportunity cost model 

In order to model opportunity costs of fishing sites we consider the stakeholder groups in 

the region.  We define stakeholder groups by the type of fishing gear used (Table 1).  In 

Kubulau there are seven stakeholder groups identified by the types of fishing gear.  For each 

stakeholder group we identify key species, i.  We define the opportunity cost to stakeholder 

group j to be cj 
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Where pji is the percentage catch for gear type j of species i, ai is the abundance of species i, 

bi is the expected biomass of species i and mi is the market value of species i. 

 

The opportunity cost, c, of a fishing site is the sum of opportunity costs to all stakeholder 

groups weighted by the current proportion , wj, of the total fleet of gear types and fishers 

currently in the fishery: 

 
 

We calculate the opportunity cost as a weighted sum to capture the current distribution of 

gear types in the fleet.  Additionally, a fishing site is not exclusively available for fishing by 

any one gear type, therefore calculating the opportunity cost to be equal to the most 

profitable gear type at that site is not accurate for marine environments.  We calculate the 

opportunity costs to each stakeholder group as well as the full opportunity cost of each 

fishing site. 

 

The abundance and percentage catch components were modeled separately.  Each model is 

described in full detail below.  Biomass was estimated based on average size of fish by 

species from the UVC data.  Market value, or sales price, was obtained by the closest Fiji 

Department of Fisheries district office in Savusavu. The most recent fish prices from 2009 by 

family are provided in Table 3.   

 
Table 3. Fish price as set by Fiji Department of Fisheries branch office in Savusavu, Vanua Levu.  

 

Class Price (FJD/kg) Family 

A $3.00 Lethrinidae, Serranidae, Siganidae 

B $2.50 Carangidae, Haemulidae, Lutjanidae, Mullidae  

C $2.00 Acanthuridae, Scaridae 

 

Species abundance models 

Because species abundance data is often characterized by a large number of zeros, a 

number of zero-inflated models have recently been developed which allow for the 

concurrent estimation of occurrence and abundance (Joseph et al. 2009; Warton 2005; 

Welsh et al. 1996; Wenger & Freeman 2008). To ensure a rigorous treatment of the 

abundance modelling, we compared four count models for each species abundance model: 

Poisson (P), Negative Binomial (NB), zero-inflated Poisson (ZIP) and zero-inflated Negative 

Binomial (ZINB) (see supplementary materials for mathematical details).  The Poisson and 

Negative Binomial models are standard count models used to estimate abundance whereas 

the zero-inflated models simultaneously model probability of detection and abundance. 

Because Poisson models may be sensitive to low occurrence numbers we selected only 

species that had at least 15% occurrence in the data resulting in 35 species from 17 genera 

(see Appendix 1 for equations).   
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The models were fit using the general linear model (glm) and zero-inflated model (zeroninfl) 

functions in R (R Development Core Team 2005).  These packages use maximum likelihood 

to estimate coefficients for the generalized linear models (Poisson and negative binomial) as 

well as for the zero-inflated models.  We used forward and backwards removal to select the 

best subset of predictors for each model (see Table 4 for list of predictors).  For each species 

we selected the best model by comparing proportion of zeros (predicted zeros/observed 

zeros) and Akaike’s information criterion (AIC; Akaike 1974): 

 

AIC= 2k – 2logL 

 

where L is the likelihood and k is the number of parameters in the fit.  The best-fitting model 

has the lowest AIC.  In the case where models had similar AIC the model with the closest 

predicted number of zeros was selected (Thompson & La Sorte 2008; Warton 2005; Wenger 

& Freeman 2008) (see Appendix 2 for model details).  Abundance was predicted for each 

species across the qoliqoli based on the selected model.  Abundance was then summed by 

family and fish class to produced expected abundances for these groupings of species. 

 
Table 4. Biophysical and anthropogenic predictors of fish species abundance.  The type of variable is 

listed (binary or numeric). 

 

Predictor Variable name Variable type 

Reef Type Fringing Binary 

 Barrier Binary 

 Patch Binary 

Seagrass Seagrass Binary 

Exposure to tides  Submerged Binary 

Exposure to waves Forereef Binary 

Depth > 5m Deep Binary 

Distance to shore Distance Numeric 

Protection status MPA Binary 

 

The predictor variables were selected based on available data representing biophysical 

anthropogenic factors that influence abundance (Table 4). Note that all predictors were 

considered for both the Bernoulli, Poisson and negative binomial processes in the mixture 

models.  However, the best subsets of predictors were selected for each of the processes in 

the mixture models. 

Percentage catch models 

For each gear type group we compared the predicted abundance of key species to the 

number of fish caught as reported in CPUE surveys (WCS, unpublished data).  For each gear 

type the genera included are based on the CPUE data and are in line with previous reports 

of species caught (Teh et al. 2009). Percentage catch (catch/abundance) was modeled by 

gear type using regression analysis, using AIC to determine the best subset of predictors 

(Table 5, Appendix 3).   

Opportunity cost model validation 

The modeled opportunity costs were compared to the Kubulau CPUE data for 250 m grid 

cells.  The opportunity cost by gear type and CPUE by gear type was recorded for each 250 
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m grid cell in the study region that had CPUE recorded (n = 713).  A spearman’s rank 

correlation was calculated by gear type group to determine how similar the relative value of 

each grid cell was using the traditional socio-economic data and our opportunity cost model.   

 
Table 5. Predictor variables for percentage catch models. 

 

Predictors Description 

time The amount of time spent fishing per fisher, determined from CPUE data 

time2 The amount of time spent fishing per fisher squared 

fisher Number of fishers fishing together, determined from CPUE data 

area Area in km2 

ab Abundance 

abperkm2 Abundance per km2 

 

Application  

We used Marxan software (Possingham et al. 2000) to explore options for design and re-

configuration of a cost-effective MPA network for Kubulau that met the conservation 

targets for all habitat types (Table 2).  Marxan uses a simulated annealing algorithm to find 

good solutions to the mathematical problem which is:  

 

minimize ∑∑∑ −+

=

Ns

i

Ns

h

ihhi

Ns

i

ii cvxxbcx )1(*
1  

 

subject to the constraint that all the representation targets are met 

 

j

Ns

i

iji Trx ≥∑  ∀ j 

and x is either zero or 1 

 

x
i
∈ {0,1}

 
∀  i 

 

where rij is the occurrence level of feature j in site i, ci is the cost of site i, Ns is the number of 

sites, Nf is the number of features, and Tj is the target level for feature j.  The control 

variable xi has value 1 for sites selected for the reserve network and value 0 for sites not 

selected (Ball et al. 2009).     

 

The first equation minimizes the penalties associated with the cost of a network and the 

configuration or shape of the reserve network.  The parameter cvih reflects the cost of the 

connection, in this case simply the shared boundary, of planning units i and h.  The 

parameter b, is the boundary length modifier (BLM), a user-defined variable that controls 

the importance of minimizing the total boundary length of the selected areas.  A small BLM 

will result in a reserve network that minimizes cost but might be quite fragmented.  A large 

BLM will place greater emphasis on minimizing boundary length to produce a more compact 

reserve network but at a likely greater cost.   
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We consider four scenarios: 

 

Scenario 1- We use CPUE as the cost layer and do not require that current tabu areas and 

MPAs be included in the selection of representative areas (clean slate #1). 

 

Scenario 2 – We use CPUE as the cost layer and require that current tabu areas and MPAs be 

included in the selection of representative areas (locked in #1). 

 

Scenario 3- We use opportunity cost as the cost layer and do not require that current tabu 

areas and MPAs be included in the selection of representative areas (clean slate #2). 

 

Scenario 4 – We use opportunity cost as the cost layer and require that current tabu areas 

and MPAs be included in the selection of representative areas (locked in #2). 

 

For the each habitat type (barrier, fringing and patch reefs), we set a representative target 

of 30%.  For each scenario, we selected the BLM with the method described Stewart & 

Possingham (2005).  To implement this method, we ran Marxan with the simulated 

annealing schedule and performed 100 repeat runs for each scenario.  The repeat runs used 

progressively larger values for BLM, varied incrementally from 0 to 10.  This allowed us to 

identify, for each scenario, a good BLM that minimizes the trade-off between boundary 

length and cost.  For each scenario we ran Marxan with the simulated annealing schedule 

and 1,000 repeat runs.   

RESULTS 

Table 6. Best performing predictive abundance model by fish species. 

 

Name Model Name Model 

Acanthurus lineatus ZINB Macolor niger  ZIP 

Acanthurus nigroris ZINB Monotaxis grandoculis ZINB 

Acanthurus olivaceus ZINB Naso lituratus ZINB 

Cephalopholis argus ZIP Naso unicornis ZINB 

Cetoscarus bicolor ZINB Parupeneus barberinus ZINB 

Cephalopholis urodeta NB Parupeneus bifasciatus ZINB 

Chlorurus bleekeri ZINB Parupeneus cyclostomus ZIP 

Chlorurus microrhinos ZINB Parupeneus multifasciatus ZINB 

Chlorurus sordidus ZINB Plectropomus leopardus ZIP 

Ctenochaetus striatus ZINB Scarus altipinnis NB 

Epinephelus merra NB Scarus dimidiatus ZIP 

Hipposcarus longiceps NB Scarus ghobban ZINB 

Lutjanus bohar ZINB Scarus niger ZINB 

Lutjanus fulvus  ZINB Scarus oviceps NB 

Lutjanus gibbus  ZINB Scarus schlegeli ZINB 

Lutjanus monostigma ZIP Siganus doliatus ZIP 

Lutjanus semicinctus  ZIP Siganus punctatus ZIP 

Macolor macularis  ZINB   
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The zero-inflated models outperformed the negative binomial and Poisson models for 86% 

of the species considered.  The zero-inflated negative binomial was the best performing 

model (selected for 21 of the 35 species, Table 6) and zero-inflated poisson was the second 

best model (selected for 9 of 35 species, Table 6).  

 

Acanthuridae, Lutjanidae and Scaridae were the most abundant families in the qoliqoli in 

terms of numbers of their targeted food fish sighted (Figure 2).  Species abundance model 

results indicate that abundance of fish within these three families varies spatially with 

highest abundance occurring in different habitats for each.  Acanthurids have the highest 

abundance on inshore fringing and patch reefs (Figure 2a); lutjanids have the highest 

abundance on barrier reefs (Figure 2b); while scarids have the highest abundance on 

fringing reefs (Figure 2c).   

 

 

Figure 2. Modeled abundance per 2,500 m2 for the three most abundant families: Acanthuridae, 

Lutjanidae, Scaridae. (a) Acanthuridae abundance per 2,500 m2 (b) Lutjanidae abundance per 2,500 

m2 (c) Scaridae abundance per 2,500 m2  

 

 

Abundance by market class also varied spatially (Figure 3).  Fish in Class C were most 

abundant, with widespread distribution across all habitats in the qoliqoli, particularly on 

seaward facing slopes of fringing reefs and forereef slopes of barrier reefs (Figure 3c). Class 

B fish were found in greatest numbers on outer barrier forereefs, while Class A fish had the 

lowest abundance in these areas (Figure 3a,b).  Class A fish had distinctly higher abundance 

on inshore fringing and patch reefs (Figure 3a). 
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Figure 3. Abundance per 2,500 m2 by market class A, B, C.  (a) Market Class A Abundance.  Families 

included are Lethrinidae, Serranidae and Siganidae.  (b) Market Class B Abundance.  Families 

included are Carangidae, Lutjanidae and Mullidae. (c) Market Class C Abundance.  Families included 

are Acanthuridae and Scaridae.  

 

CPUE, as indicated by fisher survey records, was relatively uniform across all inshore reefs 

with the highest effort occurring on fringing reef near villages, particularly near areas where 

multiple villages are in close proximity (Figure 4a). However, by gear type CPUE was spatially 

dissimilar (Figure 5, Table 6a).  Actual spatially distributed CPUE from trolling, diving and 

hand line were most similar (ρ ranging from 0.125 to 0.314, Table 6a).  Hawaiian sling and 

speargun CPUE were the most dissimilar (ρ=-0.235, Table 6a). 

 
Table 6. Comparison of gear type effort (per 2,500 m2) across qoliqoli. Bold values indicate 

significance at p < 0.001, all other values non-significant.    (a) Spearman’s rank correlation (ρ) of 

CPUE by gear type  (b) Spearman’s rank correlation (ρ) of opportunity costs by gear type (p<0.001). 

 

(a) Correlations between CPUE by gear type 

 dive handline handspear Hawaiian gillnet speargun trolling 

handline 0.061       

handspear 0.043 -0.128      

hawaiian -0.079 -0.121 0.007     

gillnet -0.159 -0.066 -0.023 -0.144    

speargun -0.132 -0.225 -0.227 -0.235 -0.044   

trolling 0.314 0.125 -0.074 -0.070 -0.133 -0.016  

total -0.236 0.193 0.079 0.098 0.366 0.348 -0.169 
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(Table 6 cont.) 

 

(b) Correlations between Opportunity Cost by gear type 

 dive handline handspear Hawaiian gillnet speargun trolling 

handline 0.797       

handspear 0.988 0.836      

hawaiian 0.85 0.93 0.892     

gillnet 0.958 0.906 0.982 0.939    

speargun 0.939 0.931 0.955 0.924 0.98   

trolling 0.9 0.852 0.932 0.903 0.945 0.916  

total 0.945 0.93 0.968 0.939 0.994 0.995 0.934 

 

 
Figure 4.Total CPUE and modeled Opportunity Cost for all gear types in Kubulau district.  (a) Catch 

per unit effort (CPUE) calculated as catch person-1 hour-1 m-2. (b) Opportunity cost to all gear types in 

Fiji Dollars (FJD) per 2,500 m2.   
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Figure 5. Catch per unit effort to gear type groups.  (a) CPUE of trolling users in catch person-1 hour-1 

m-2  (b) CPUE of speargun users in catch person-1 hour-1 m-2 (c) CPUE of hand line users in catch 

person-1 hour-1 m-2  (d) CPUE of gillnet users in catch person-1 hour-1 m-2. 
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The modeled opportunity cost was highest for inshore fringing and patch reefs, with one 

section of high value fringing reefs occurring offshore in the Namena MPA (Figure 4b).  

Modeled opportunity costs were variable both in magnitude and spatial distribution for the 

different gear types used (Figure 6).   Speargun users had the highest opportunity cost of all 

gear types with a maximum value of $11.88 FJD/2,500 m2, and opportunity costs were 

positively correlated with speargun CPUE (Figure 6b, Table 6b).  Opportunity costs to 

speargun users were, on average, higher than all other gear types across all offshore reefs 

(Figure 6b).  Users of gill nets and hand lines had the next highest opportunity costs, 

respectively, with highest values for both occurring on inshore fringing and patch reefs 

(Figure 6c,d). Users who troll for catch had the lowest opportunity cost of all gear types 

(Figure 6a) with the greatest potential loss occurring on barrier forereefs.   

 
Table 7. Comparison of modeled opportunity costs by gear type to CPUE data across qoliqoli (n = 

713).  Spearman’s rank correlation (ρ) of opportunity costs and CPUE by gear type (*** p < 0.001, ** 

p < 0.01, * p < 0.05).   

 

Gear Type Spearman’s rank correlation (ρ) 

Gillnet* 0.075 

Diving** -0.092 

Hawaiian*** 0.096 

Hand line -0.018 

Hand spear 0.046 

Speargun*** 0.170 

Trolling -0.052 

Total*** 0.303 

 

 

Modeled opportunity costs were positively correlated for all users of gear types (Table 6b).  

Opportunity costs to speargun and gillnet users were most similar to total effort for the 

modeled opportunity costs (ρ = 0.995 and 0.994 respectively, Table 6b). Total modeled 

opportunity cost was positively correlated with total CPUE (ρ = 0.303, p < 0.001, Table 7). 

Speargun had the highest correlation between the modeled opportunity cost and catch per 

unit effort data (ρ = 0.170, p < 0.001) and hand line had the lowest correlation (ρ = -0.018; 

Table 7).  

 

The current network of tabu and MPAs in Kubulau qoliqoli cover 40% of all barrier reefs, 

36% of fringing reefs and 2% of patch reefs.  For the reconfiguration scenarios 2 and 4 with 

the protected area network locked in, areas selected by Marxan analyses were 

predominantly the patch reefs within Cakaunivuaka Reef (Figure 7b,d). The selection 

frequency for these two scenarios had a strong, positive correlation (Spearman’s rank 

correlation coefficient ρ2,4 = 0.848, p < 0.001). Selection frequency for the clean slate 

scenarios 1 and 3 was also positively correlated (Spearman’s rank correlation coefficient ρ1,3 

= 0.847, p < 0.001).  The frequency of areas selected under the clean slate versus locked in 

scenarios using CPUE were negatively correlated (Spearman’s rank correlation coefficient 

ρ1,2 = -0.012, p<0.035), while the frequency of areas selected using opportunity costs data 

was positively correlated (ρ3,4=0.312, p<0.001). Clean slate areas provided more spatial 
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Figure 6. Opportunity costs to gear type groups.  (a) Opportunity cost to trolling users in Fiji Dollars 

(FJD) per 2,500 m2 (b) Opportunity cost to speargun in Fiji Dollars (FJD) per 2,500 m2 (c) Opportunity 

cost to hand line in Fiji Dollars (FJD) per 2,500 m2 (d) Opportunity cost to gill net in Fiji Dollars (FJD) 

per 2,500 m2. 

 

options and are notable in particular for their virtual exclusion of reefs within the Namuri 

MPA (Figure 7a,c).  Best solutions from the clean slate Marxan analyses also indicate that 

Namuri MPA plus some of the inshore community tabu could be eliminated, while adding 

protection to Nakadamalevu and Cakaunivuaka reefs (Figure 8a,c). The locked in model also 
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indicates possible additions to the network from the northwest, central, and southwest 

portions of Cakaunivuaka reefs (Figure 8b,d). 
 

 
Figure 7. Marxan Selection Frequency (a) Selection frequency for scenario 1.  Current MPAs were not 

locked in and CPUE was used as the cost layer. (b) Selection frequency for scenario 2.  Current MPAs 

were locked in and the boundaries are shown in black. CPUE was used as the cost layer. (c) Selection 

frequency for scenario 3.  Current MPAs were not locked in and opportunity cost was used as the 

cost layer. (b) Selection frequency for scenario 4.  Current MPAs were locked in and the boundaries 

are shown in black. Opportunity cost was used as the cost layer.  
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Figure 8. Marxan best solutions. (a) Best solution for scenario 1.  Current MPAs were not locked in 

and CPUE was used as the cost layer. (b) Best solution for scenario 2.  Current MPAs were locked in 

and the boundaries are shown in black. CPUE was used as the cost layer. (c) Best solution for 

scenario 3.  Current MPAs were not locked in and opportunity cost was used as the cost layer. d) 

Best solution for scenario 4.  Current MPAs were locked in and the boundaries are shown in black. 

Opportunity cost was used as the cost layer. 
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DISCUSSION 

Species abundance and opportunity costs models 

The best models selected for species abundance were predominantly zero-inflated models.  

The zero-inflated negative binomial was the dominant model across the 35 species which is 

in line with model selection in other studies (Joseph et al 2009).  When aggregated to the 

family level, abundance was higher for Acanthuridae, Lutjanidae and Scaridae.  This result is 

consistent with previous reports of acanthurids and scarids accounting for a large 

percentage of catch in Fijian and other tropical Western Pacific fisheries (Jennings & Polunin 

1995; Kuster et al. 2005; Rhodes et al. 2007). The highest predicted abundance for these 

families occurs in lagoon reefs (acanthurids and scarids) and on outer reef sleeps (lutjanids; 

Figure 2), which is comparable to previous reports of highest CPUE on lagoon reefs and 

outer reef slopes and open seas (Jennings & Polunin 1995).   
 

 
 

Figure 9. Fiji fisherman with a traditional speargun (Hawaiian sling) trailing catch. 

 

The highest value fish (Class A) have spatially dissimilar abundance distribution to the mid-

value fish (Class B).  However, this spatial dissimilarity does not seem to impact current 

fishing effort.  Fishing effort summed across all gear types is highest on reefs closest to 

villages (inshore fringing and patch reefs), with low effort reported to occur on outer reef 

slopes.  Based on overall species abundance distributions, opportunity cost models were 

highest for inshore fringing and patch reefs because there are both high value fish and high 

abundances of low value fish, validating our expectations. While this suggests that market 

value may be driving the spatial distribution of effort to some degree, market value does not 

appear to be the only consideration.  For example, if market value were the only factor for 

spatial distribution of fishing, we would expect higher effort on outer reef slopes where the 
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mid-value fish have high abundances. Although spearguns are the most efficient gear type 

used (Figure 9), consistent with results from other artisanal catch surveys from coral reef 

fisheries (McClanahan & Mangi; Cinner et al. 2009), and were used by Kubulau fishers on 

the outer reefs, due to economic constraints they are not owned by all fishers. If the market 

value of fishes were more spread out such that the large Class A and B fishes commonly 

found on the outer reef (e.g. Carangidae, Lutjanidae, Lethrinidae, Serranidae) had relatively 

greater value, there would likely be a displacement of fishing effort towards offshore areas, 

and other Kubulau residents might invest in spearguns, particularly if they have access to a 

reliable market. This type of market-driven fishing displacement has been observed in other 

multispecies fisheries, where the high value of catch has strongly influenced the location of 

fishing effort, particularly in situations with rising fuel prices and depletion of commercial 

stocks (Arellano & Swartzman 2009). 
 

Opportunity costs models are likely to have high values for areas that currently have high 

fishing effort as fishermen will likely choose to exploit the most abundant accessible fishing 

ground (Aswani 1998).  Indeed, the modeled opportunity cost from this study was 

significantly, positively correlated to CPUE, indicating that if fishers are targeting high value 

reefs they will fish the inshore fringing and submerged patch reefs.  However, the 

opportunity cost model also identified additional offshore regions of high value such as the 

fringing reef around Namenalala Island and the barrier forereef which are currently not 

fished. Additionally, different gear types have higher costs in areas distant from the inshore 

fringing reefs: for example, opportunity costs are highest for trolling on barrier forereefs.  

These differences reflect the differential efficiency of gear types across habitats (Kuster et 

al. 2005; Teh et al. 2009), which is reflected in the spatial heterogeneity of opportunity costs 

broken down by individual gear type. Speargun users are the most correlated with total 

opportunity cost.  This is mainly due to the fact that due to its efficiency, speargun 

opportunity cost is often an order of magnitude larger than other opportunity costs to other 

gear types.   
 

In contrast to the CPUE data, the estimated opportunity costs were all positively correlated 

for all gear types because the method demonstrates the expected cost of an area if a gear 

type were to be used. The model can therefore be used to examine expected distributions 

of fishing effort as access to gear types and modes of transport change.  For example, we 

can use our opportunity cost model to examine how costs will change as more fishers gain 

access to spearguns and therefore change their spatial fishing effort.  This type of analysis is 

not possible with the CPUE data as it only reflects current spatial distribution of effort and 

access to gear types.  Our model can also be used to examine how fishing effort is expected 

to change as access to motorized transport increases (e.g. in Nicaragua, Daw 2008).  The 

rapid uptake of motorized transport vessels, and subsequent change in fishing effort, has 

been observed in developing countries (Pauly 2006).  This transition is also found in Fiji 

where the traditional outrigger canoe is being replaced by motor boats, resulting in a 

dramatic increase in catch rate (Kuster et al. 2005). 
 

MPA network reconfiguration options for Kubulau 

There were notable similarities in the Marxan trials with the clean slate and locked in 

approaches where CPUE data and the opportunity cost data were used as alternative cost 

layers. Both locked in approaches indicated high priority additions to the network should 
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include areas within Cakaunivuaka Reef. Determination of the exact placement of new areas 

within the reef, however, will likely generate heated debate among resource users in 

Kubulau given that resource mapping exercises have indicated heavy use in the 

northeastern and southwestern portions of the reef (Figure 10).  
 

 
 

The clean slate approaches using both cost layers were also fairly similar and indicate other 

potential sites that could be added to the network, in particular, areas within Nakadamulevu 

Reef, a site originally proposed in 2005 for inclusion within the protected area network. 

Given that recent monitoring from the Namuri MPA suggests that it is being substantially 

affected by poaching (WCS 20010), and that the clean slate Marxan trials failed to select 

sites within Namuri, it would be worthwhile to suggest a trade-off to the community to 

open portions of Namuri in exchange for protection areas within Nakadamulevu and the 

adjacent Nakadamulailai reefs that are not heavily used for fishing. Closure of these areas 

could potentially also offset opening a portion of Namena Marine Reserve, which has been 

heavily contested by one of the Navatu clans with traditional fishing rights (kanakana) in the 

Figure 10. 
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area who have been repeated caught fishing in the Namena MPA in breach of community 

management rules (Clarke & Jupiter in press). Because the clan has perceived inequity in the 

distribution of costs and benefits of the initial MPA network design, the Marxan solutions 

offer options for reconfiguration that may reduce conflict by producing a more socially 

acceptable configuration (Lal 2005). Some of this conflict may have arisen because 

environmental and social goals of management were ill-defined from the outset: having a 

clear understanding of these goals is critical to ensure that MPA design does not adversely 

impact current fishing industries and community identity (Ban et al. 2009; Klein et al. 2008).   

 

While the two clean slate scenarios were spatially very similar (ρ1,3=0.847, p<0.001), there 

were some notable differences: for instance, the fringing reef around Namenalala Island 

was included in the Marxan scenario with CPUE as the cost layer but not when opportunity 

cost was considered.  This is an example of how opportunity cost data allows for 

consideration of future fishing effort, which may be preferable to community managers who 

need to evaluate selections based on potential as well as current fishing effort. However, it 

is important to note that fishers may still fish even if costs are high because they fishing is a 

strong part of their cultural identity. These non-monetary benefits, which are not 

necessarily factored in to opportunity cost calculations, may make it hard for fishers to 

switch occupations (Pollnac & Poggie 2008).    

 

Applications to other regions 

The method for calculating opportunity costs to fishers presented here could be applied in 

any region with existing biological data, such as UVC surveys.  We base our model on the 

assumption that catch size is a function of fish abundance and therefore closures to fishing 

in areas of high fish abundance will be of higher cost to fishermen.  Therefore, our model 

differs from standard survey approaches that attempt to minimize impacts on current effort 

by deriving current preferred fishing grounds.  Additionally, standard socio-economic survey 

methods often have issues such as ensuring representative gear type participation, full 

disclosure of fishing areas and lack of standardized methods for integrating spatial data (for 

methods on standardizing data collection with GIS see Close & Brent Hall 2006; De Freitas & 

Tagliani 2009).  Our model may be useful when time and financial resources are limited or 

surveyors do not have adequate trust from fishers to receive accurate interview data 

regarding fishing effort.  Additionally, CPUE data may not be appropriate for considering 

socio-economic goals for future fisheries usage if gear preferences or access to transport are 

expected to change dramatically (Salas & Gaertner 2004), whereas models incorporating 

opportunity costs may be used in these cases to examine the spatial distributions of effort.    

 

The opportunity cost model provides data that can directly be used in decision support tools 

such as Marxan and Marxan with Zones (Ball et al. 2009; Watts et al. 2009).  It is increasingly 

clear that inclusion of this type of data in conservation planning is key in data poor regions 

or regions that are likely to be highly sensitive to socio-economic considerations (Ban et al. 

2009; Ban  & Klein 2009).  If we expect spatial distribution of fishing effort to be market 

driven then our opportunity cost model provides a good data set for including socio-

economic goals such as maximizing future fisheries returns or minimizing future impacts to 

preferred gear types.  However, in developing countries studies have suggested that 

artisanal fishers are not always market driven (Pet-Soede et al 2001; Daw 2008).  Factors 
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such as prestige associated with specific gear types, values placed on time versus money, 

risk aversion and restricted opportunities such as access to transport or marine tenure 

systems have been cited as affecting fisher behaviour (Bene & Tewfik 2001; Montenegro et 

al. 2001; Salas & Gaertner 2004).  Therefore, when used for resource management 

decisions, the local context should factor heavily in what other information needs to be 

considered (e.g. considering the traditional divisions of fishing grounds or kanakana in Fiji).  

While these factors may weigh heavily in decision making, our model provides sound 

information regarding the economic considerations of designing MPAs and can be coupled 

with pertinent social information to provide informed decision making. 
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APPENDIX 1. Species Abundance Model Equations 

 

Four models were compared for each species: Poisson (P), negative binomial (NB), zero-

inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB). 

 

The Poisson distribution has a probability mass function of: 

 

 , x = 0,1,2,…,∞ 

 

where λ is the mean, which can be interpreted as the mean number of events occurring in 

an area or time.  In this case we interpret λ to be the number of fish counted in the 250 m2 

survey area or in time units the number of fish counted in .33hrs.  A limitation of the Poisson 

distribution is that the variance is equal to the mean.  In biological data sets this is unlikely 

to be the case.  In the case of over dispersed data, where the sample variance is greater 

than the sample mean, the negative binomial distribution can be used.  The negative 

binomial distribution can account for larger variances with the use of the additional 

parameter θ. The probability mass function of the negative binomial is:   

 

, x = 

0,1,2,…,∞ 

 

where λ is the mean, θ is the dispersion parameter and N is the number of individuals in the 

survey site.  

 

Environmental predictors were incorporated into the generalized linear regression and the 

log-linear transformation was applied: 

 

  
 

where λi is the mean abundance at site i, γ0 is the intercept coefficient, xi are the predictor 

variables for site i and γj are the predictor coefficients determined by maximum likelihood.   

 

In zero-inflated mixture models the models are a mixture of a Bernoulli process (to model 

occupancy of sites) and Poisson or negative binomial process (to model site abundance).  

The mixture model assumes that some of the zeros occur due to the absence of a species at 

a site (captured by the Bernoulli process) and some of the zeros occur due to error in the 

count model (captured by the Poisson or negative binomial process).  Therefore, the 

probability mass function for the zero-inflated Poisson process is: 

 

  

 , x = 1,2,…,∞ 

 

where N is the actual site abundance, ψ is the probability that the site is occupied and λ is 

the mean abundance.  Similarly, the probability mass function for the zero-inflated negative 

binomial process is: 
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, x = 

1,2,…,∞ 

 

where N is the actual site abundance, ψ is the probability that the site is occupied, λ is the 

mean abundance and θ is the dispersion parameter of the negative binomial.   

 

The log-linear transformation is applied to the Poisson and negative binomial components 

of the ZIP and ZINB.  For the Bernoulli process a logistic regression is applied to predict 

occupancy: 

 

  
 

where ψi  is the mean abundance at site i, β0 is the intercept coefficient, xi are the predictor 

variables for site i, and βj are the predictor coefficients determined by maximum likelihood.  
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APPENDIX 2. Species Abundance Models 

Details of the model selected for each species is provided along with the AIC and proportion zeros. 

The variables considered are provided in Table 1 and correspond to the predictors discussed in the 

methods section. 

 

Name Model Equation AIC 

Proportio

n zeros 

Acanthurus 

lineatus 

ZINB log(λ) =  5803+1.1487MPA + 1.0586Fringing -

1.4808Seagrass  

logit(ψ) = 2.2052 -0.8246submerged 

308.6 1.007 

Acanthurus 

nigroris 

ZINB log(λ) =  1.5106 + 0.9843 MPA -1.9526 Barrier -2.8795 

Fringing + 1.8929Seagrass + 1.2673forereef  

logit(ψ) = 2.5589 -1.3350submerged 

299.2 1.000 

Acanthurus 

olivaceus 

ZINB log(λ) =  -0.3474+0.7258MPA + 2.4137Barrier + -

0.9574submerged + 0.8337forereef  

logit(ψ) = 2.1313-0.9309submerged 

317.4 1.000 

Cephalopholis 

argus 

ZIP log(λ) =  -0.4720-0.1657 MPA + 1.2758Barrier -0.3596 

submerged -0.7076 Deep  

logit(ψ) =  -3.1466-2.0674MPA + 4.3170Barrier -

1.6284Deep 

392.4 0.980 

Cetoscarus 

bicolor 

ZINB log(λ) =  -0.6338-0.6808 Barrier + 2.9584Fringing 

logit(ψ) = 0.1107-1.6391forereef 

604.4 1.000 

Cephalopholis 

urodeta 

NB log(λ) =  -0.9562 + -0.7682submerged 296.06 0.992 

Chlorurus 

bleekeri 

ZINB log(λ) = 1.8949-0.2722Fringing  

logit(ψ) = 0.9543-0.7221forereef -0.7715submerged 

685.4 1.000 

Chlorurus 

microrhinos 

ZINB log(λ) =  0.8886 +0.5502 MPA + 1.4201Fringing -

2.4271 Seagrass + 0.6926submerged  

logit(ψ) = 0.1095 -0.8022forereef + 0.5734Deep 

709.2 1.000 

Chlorurus 

sordidus 

ZINB log(λ) =  1.7369+0.4830 forereef  

logit(ψ) = 0.5712 + -0.9308submerged 

935.2 1.000 

Ctenochaetus 

striatus 

ZINB log(λ) =  2.7195 + 0.5222MPA -0.4206Barrier -

0.4757Deep + 0.5246forereef  

logit(ψ) = -0.7085 + 1.6397MPA + 1.4228Barrier -

0.7331submerged 

751.4 1.000 

Epinephelus 

Merra 

NB log(λ) =  -2.6165 + 1.0338submerged -1.0529forereef 200.85 1.000 

Hipposcarus 

longiceps 

NB log(λ) =  -2.302+4.122Fringing + -3.496Seagrass + 

1.090submerged + 0.0008544distance 

331.04 1.000 

Lutjanus bohar ZINB log(λ) =  -0.0413 + 0.9142forereef  

logit(ψ) = 0.4994-1.3889Barrier 

619.4 1.000 

Lutjanus fulvus  ZINB log(λ) = 1.1059 + 0.8658MPA + 0.9638Fringing -

1.0002Deep  

logit(ψ) = 0.6349+ 0.6216submerged 

242.6 0.993 

Lutjanus 

gibbus  

ZINB log(λ) =  1.2234 +0.3343 MPA  

logit(ψ) = -0.6335+0.4480submerged 

769.8 1.000 

Lutjanus 

monostigma 

ZIP log(λ) =  -3.5860+1.4884MPA + 2.5218Seagrass + 

1.6865Fringing + 2.0503forereef  

logit(ψ) = 0.03595+ 2.08250Seagrass 

189.2 1.000 
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Name Model Equation AIC 

Proportio

n zeros 

Lutjanus 

semicinctus  

ZIP log(λ) =  -0.2692+0.4870Barrier + 0.2934Deep + 

0.4761submerged  

logit(ψ) = -0.5401+0.5682submerged 

464.6 1.000 

Macolor 

macularis  

ZINB log(λ) =  -0.07471+ 0.59082MPA + 0.65725forereef  

logit(ψ) = 0.9892 + 0.3582submerged 

385 1.000 

Macolor niger  ZIP log(λ) =  -0.4586 -2.0081 Seagrass + 0.9562Deep + 

0.8967forereef  

logit(ψ) = 0.7255+0.3972submerged 

364.2 1.000 

Monotaxis 

grandoculis 

ZINB log(λ) =  1.3511 + 0.4766Barrier  

logit(ψ) = -0.9505 + 0.7344Deep 

970.4 1.021 

Naso lituratus ZINB log(λ) =  0.6517-0.8754Seagrass + 0.6542submerged  

logit(ψ) = 2.8808 + 0.7895MPA -1.4811 Barrier -

2.9400 Seagrass -1.3792 forereef 

476 1.000 

Naso unicornis ZINB log(λ) =  1.6970 + 0.5318MPA -1.7404 Barrier -1.3671 

Fringing + -2.1027Seagrass + 0.4097Deep + 

0.7369submerged  

logit(ψ) = 0.4458 + 1.2541 Barrier 

393.2 1.008 

Parupeneus 

barberinus 

ZINB log(λ) =  0.6229+ 0.6542Barrier + 0.8605Fringing -

0.4130forereef + 0.3984submerged  

logit(ψ) = 0.7172 + 1.0368MPA -1.3364  Seagrass 

506 1.000 

Parupeneus 

bifasciatus 

ZINB log(λ) =  0.7428-0.3592MPA + 0.5858forereef 

logit(ψ) =  1.4764 + 15.8825Patch 

387.4 1.000 

Parupeneus 

cyclostomus 

ZIP log(λ) =  -0.8861 +0.2751 Barrier  

logit(ψ) = -0.03607+1.47221Seagrass 

+0.88298forereef 

264 1.000 

Parupeneus 

multifasciatus 

ZINB log(λ) =  1.1328-0.7618 Patch + 0.5895Deep -0.7456 

forereef  

logit(ψ) = 0.28 -1.9591 Patch 

360.6 1.000 

Plectropomus 

leopardus 

ZIP log(λ) =  0.2179 -1.2473Barrier -1.1920submerged  

logit(ψ) = 0.2729+2.0921Barrier - 13.1578submerged 

169.2 1.007 

Scarus 

altipinnis 

NB log(λ) =  0.3414+1.6554 MPA -2.9865 Barrier -5.3612 

Seagrass -1.1627  Deep +  2.9682forereef 

433 0.992 

Scarus 

dimidiatus 

ZIP log(λ) =  1.0516+ 0.3694Fringing  

logit(ψ) = 0.04855 +1.27836 Barrier 

288 1.000 

Scarus 

ghobban 

ZINB  log(λ) =  0.8256  -0.6094MPA +0.6855 forereef + 

0.6042submerged  

logit(ψ) = -1.3009+1.7594submerged 

536 1.000 

Scarus niger ZINB log(λ) =  0.9487 -0.3020Deep + 0.4657forereef logit(ψ) 

= -0.1108-0.9279forereef 

769.4 1.000 

Scarus oviceps NB log(λ) =  -0.08557-0.00005078 distance -.5996Deep 460.61 0.964 

Scarus 

schlegeli 

ZINB log(λ) =  1.2882+ 0.5543MPA -0.5613Barrier -

0.9916Seagrass +0.9265 submerged  

logit(ψ) = 0.4658-0.8336submerged 

804 1.000 

Siganus 

doliatus 

ZIP log(λ) = 1.5476 -0.7184MPA -5.2078 Barrier -5.0360 

Fringing 0.4987 forereef  

logit(ψ) = 0.04286 +1.11709MPA -3.67213 Fringing + 

0.78589Deep 

205.18 1.000 

Siganus 

punctatus 

ZIP log(λ) =  1.0359  -0.4874MPA + 0.3208submerged 

logit(ψ) = 1.8378+ 1.0406submerged 

290 0.995 
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APPENDIX 3. Percentage Catch Models 

Models of percentage catch by gear type.  Model details and R2 values are given as well as 

the genera included, based on CPUE  surveys. 
 

Gear type Model R^2 Genera included 

Diving 0.00361 NA* Chlorurus, Lutjanus, 

Parapuneus 

Gillnet  0.0479 + 0.000205 time - 0.000008 

abperkm2 - 0.0352 area 

0.506 Chlorurus, Ctenochaetus, 

Lethrinus, Lutjanus, 

Parapuneus, Scarus, 

Siganus 

Hand line 0.0481 - 0.00399 time + 0.000026 time2 - 

0.000012 abperkm2 

0.554 Cephalopholis, Chlorurus, 

Ctenochaetus, 

Epinephelus, Lethrinus, 

Lutjanus, Parapuneus, 

Plectropomus 

Hand spear 0.0110 + 0.000036 time - 0.000007 ab 0.411 Chlorurus, Lethrinus, 

Lutjanus, Parapuneus, 

Scarus, Siganus 

Hawaiian 

Sling 

0.0322 + 0.000000 abperkm2 - 0.0402 

areakm2 

0.682 Chlorurus, Ctenochaetus, 

Epinephelus, Parapuneus, 

Plectropomus, Scarus, 

Siganus 

Speargun 0.0380 + 0.000329 time - 0.000001 time2  - 

0.000019 ab 

0.406 Acanthurus, Cetoscarus, 

Cephalopholis, 

Epinephelus, Hipposcarus, 

Lutjanus, Monotaxis, Naso, 

Parapuneus, 

Plectropomus, Scarus, 

Siganus 

Trolling 0.0055 NA* Cephalopholis, 

Epinephelus, 

Plectropomus, Scarus, 

Siganus 

*Because sample size was too small, average catch percentage was used 

 


